Novel Robust Band-Limited Signal Detection Approach Using Graph梳理
Novel Robust Band-Limited Signal Detection Approach Using Graph
@TOC ## Paper Download 原文百度云及提取码:9tok ## Abstract Abstract— In this letter, a novel graph-based adequate and concise information representation paradigm is explored. This new signal representation framework can provide a promising alternative for manifesting the essential structure of the communication signals. A typical application, namely, band-limited signal detection, can thus be carried out using our proposed new graph-based signal characterization. According to Monte Carlo simulation results, the proposed graph-based signal detection method leads to the outstanding performance, compared with other existing techniques especially when the signal-to-noise ratio is rather small. Index Terms— Graph representation, cyclic spectral analysis,sparse signal, weak signal detection. # Implemention ==BY MYSELF== ## 一、信号的生成 根据文中叙述,使用BPSK进行作为实验数据,信噪比分别是-3dB、-7dB、-11dB、-\(\infty\)dB: Matlab自带有pskmod函数: 1 | |
1 | |
1 | |
1 | |
1 | |
1 | |
noisegen函数是根据此PAPER自定义的噪声计算及添加。 到此完成信号生成(变换到频域)如下:
## 二、计算功率谱\(X(m)\),并归一化 归一化公式:
\(U_X(m)= \frac{X(m)-\theta_{min}}{\theta_{man}-\theta_{man}} , m=0,1,...M-1\)
其中\(X(m)\)是功率谱,\(\theta_{max}\)和\(\theta_{min}\)是功率谱的最大值和最小值。 使用FFT计算得到功率谱\(X(m)\):
\(X(m)\overset{def}{=}\frac{1}{K}|\sum_{k=0}^{K-1}x(k)e^{-j2\pi m\frac{k}{K}}|^2,0\leq m\le M-1\)
1 | |
三、量化
根据论文量化规则:
\(Q_X(m)\overset{def}{=}\triangle_\gamma(U_X(m)),m=0,1,...,M-1\)
得到量化结果: 1
2
3
4
5
6%%%%%%%%%%%
%quantization
%%%%%%%%%%%
for mm=1:1:length(Ux)
[~,r_level(mm)]=min(abs(Ux(mm)-r_set));%找到量化等级
end
四、构建邻接矩阵、度矩阵和拉普拉斯矩阵
根据论文可总结为:
\(\widetilde{A}(Q_X(m),Q_X(m+1))=1,m=1,2,...,M-1\)
再通过线性代数定理得到Laplacian Matrix:
\(L=D-A\)
其中\(L\)是Laplacian,\(D\) 是Degree Matrix,\(A\)是 Adjacency Matrix
这里用一个自己定义的函数get_LaplacianMatrix来实现: 1
2
3
4
5
6
7
8
9
10
11
12
13function Lx=get_LaplacianMatrix(r,Qx)
Ax_bar=zeros(r,r);
Dx_bar=zeros(r,r);
for i =1:1:length(Qx)-1
if(Qx(i)~=Qx(i+1))
Ax_bar(Qx(i),Qx(i+1))=1; %半正定矩阵
Ax_bar(Qx(i+1),Qx(i))=1;
end
end
for j=1:1:r
Dx_bar(j,j)=sum(Ax_bar(j,:));
end
Lx=Dx_bar-Ax_bar;1
2
3
4
5Lx=get_LaplacianMatrix(r,r_level);%得到laplacian 矩阵
[~,lamda]=eig(Lx);%计算特征值
[not_sort,~]=max(lamda);%提取特征值
lamda_sort=sort(not_sort);%特征值排序
lamda0(indx2)=lamda_sort(end-1);%找到第二大特征值
此处定理有待证明。。。
Question
此篇文章出了一个大BUG,通过SNR计算噪声功率出现了错误。
可见,文章中的信噪比添加方式是错误的,没有考虑白噪声的功率谱。 完整代码见My Github ==Give me a star plz!==