知识储备-信道模型整理
整理不同的信道模型以及它们的使用场景
Rician Fading
介绍
MISO System: Transmitter with M antennas and the receiver has only one antenna.
It is a very general assumption that allows modeling a wide variety of channels by tuning the Rician factor
- , the channel envelope is Rayleigh distributed
- , the channel is a fully deterministic LOS channel
莱斯衰落信道指除了经反射折射散射等来的信号外, 还有从发射机直接到达接收机 (如从卫星直接到达地面接收机)的信号,那么总信号的强度服从分布莱斯分布。有一条主路径,其余多径传输过来的信号仍如瑞利衰落所述。
瑞利衰落只适用于从发射机到接收机不存在直射信号(LOS,Line of Sight)的情况,即信道模型能够描述由电离层和对流层反射的短波信道,以及建筑物密集的城市环境。否则应使用莱斯衰落信道作为信道模型。
建模
其中是初始相位。有LOS部分:
且,是azimuth angle relative to the boresight of the transmitting antenna array。
有Rayleigh部分:
适用范围
CSI-Free中,对Wireless Energy Transfer的信道进行建模。
- On CSI-Free Multiantenna Schemes for Massive RF Wireless Energy Transfer. Onel L. A. López et.al. IEEE Internet of Things Journal, Jan.1, 1 2021 (pdf) (Citations 8)
实现
function h = RicianFadingChannel(kappa,M,x,y, choice)
phi = atan(y/x);
Phi = -(0:1:M-1)*pi*sin(phi);
h_los = PreventiveAdjustmentofMeanShift(exp(1i.*Phi.'), M, choice);
hnlos = 1/sqrt(2)*(randn(M,1)+1i*randn(M,1));
h = sqrt(kappa/(1+kappa))*h_los*exp(1i*pi/4)+sqrt(1/(1+kappa))*hnlos;
end
?? Wideband geometric channel model
介绍
Consider a transmitter-IRS channel, , (and similarly for the IRS-receiver channel) consisting of L clusters. Each cluster contributes with one ray from the transmitter to the IRS. The ray parameters are: azimuth/elevation angles of arrival, ; complex coefficient ; ; time delay . The transmitter-IRS path loss is denoted by . The pulse shaping function, with -spaced signaling, is defined as at seconds. The frequency-domain channel vector, , can then be defined as
建模
where is the IRS array response vector. Assume a block-fading channel model, where and are assumed to stay constant over the channel coherence time.
适用范围
Both transmitter and Receiver have only one antenna.
- Deep Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave Systems. Ahmed Alkhateeb et.al. IEEE Access, 2018 (pdf) (Citations 186)
- Deep Reinforcement Learning for Intelligent Reflecting Surfaces: Towards Standalone Operation. Abdelrahman Taha et.al. 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 26-29 May 2020 (pdf) (Citations 24)
Saleh-Valenzuela (SV) model (Narrowband geometric channel model)
介绍
Saleh-Valenzuela (SV) model where a geometric channel model is adopted with limited scattering.
eg: BS->IRS
建模
其中, average path-loss between BS and IRS; is the number of paths; denotes the complex gain associated with the -th path; and denote the azimuth angle and elevation angle of arrival (AoA), respectively. is the angle of departure (AoD), and represent the receive and transmit array response vectors, respectively.
假设IRS为一个有个elements的UPA (Uniform Planner Array),则有:
其中,表示Kronecker product(克罗内克积)。和表示导向矢量 or 相应向量 (steering vector) or 阵列流形 (array manifold)。 且(即空间相位),,表示天线位置:
在更多的文章中,,这和选取的参考系相关。我个人认为选比较好
由于毫米波信道的稀疏散射特性,路径L的数目相对于G的维度很小。
理解
毫米波信道可以简化为单径信道模型(求和)。主要是LoS场景。毫米波绕射能力差,路径稀疏,信道模型具有丰富的几何特征。
上面的其实就是接收为面阵,发射为线阵的导向矢量乘积,也就是==直射信道==。
适用范围
考虑毫米波稀疏散射特性,有个路径。
- Compressed Channel Estimation for Intelligent Reflecting Surface-Assisted Millimeter Wave Systems. Peilan Wang et.al. IEEE Signal Processing Letters, 2020 (pdf) (Citations 72)
- Deep Channel Learning for Large Intelligent Surfaces Aided mm-Wave Massive MIMO Systems. Ahmet M. Elbir et.al. IEEE Wireless Communications Letters, Sept. 2020 (pdf) (Citations 51)
实现
function H = generate_channel(Nt, Nr, L)
AOD = pi*rand(L, 1) - pi/2; %-2/pi~2/pi
AOA = pi*rand(L, 2) - pi/2; %-2/pi~2/pi
alpha(1) = 1; % gain of the LoS
if L >1
alpha(2:L) = 10^(-0.7)*(randn(1,L-1)+1i*randn(1,L-1))/sqrt(2);
end
% alpha(2:L) = 0;
H = zeros(Nr, Nt);
Nx = sqrt(Nr);
Ny = sqrt(Nr);
for ll=1:1:L
ax = sqrt(1/Nx)*exp((0:Nx-1)*1j*pi*cos(AOA(ll, 2))).';
ay = sqrt(1/Ny)*exp((0:Ny-1)*1j*pi*sin(AOA(ll, 1))*sin(AOA(ll, 2))).';
ar =kron(ax, ay);
at = sqrt(1/Nt)*exp((0:Nt-1)*1j*pi*sin(AOD(ll, 1))).';
H = H + sqrt(Nr * Nt)*alpha(ll)*ar*at';
end
end
还有简化版本,只有一个主径:
function H = generate_channel_simple(Nt, Nr, AOA1, AOA2, AOD)
alpha = 1; % gain of the LoS
Nx = sqrt(Nr); % 因为我这里是有Nr个element的IRS
Ny = sqrt(Nr); % 方阵排布
ax = sqrt(1/Nx)*exp((0:Nx-1)*1j*pi*cos(AOA2)).';
ay = sqrt(1/Ny)*exp((0:Ny-1)*1j*pi*sin(AOA1)*sin(AOA2)).';
ar =kron(ax, ay);
at = sqrt(1/Nt)*exp((0:Nt-1)*1j*pi*sin(AOD)).';
H = sqrt(Nr * Nt)*alpha*ar*at';
end
本文作者: Joffrey-Luo Cheng
本文链接: http://lcjoffrey.top/2022/04/11/channelmodelsummary/
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!