知识储备-信道模型整理
整理不同的信道模型以及它们的使用场景
Rician Fading
介绍
MISO System: Transmitter with M antennas and the receiver has only one antenna.
It is a very general assumption that allows modeling a wide variety of channels by tuning the Rician factor \(\kappa\geq0\)
- \(\kappa=0\), the channel envelope is Rayleigh distributed
- \(\kappa\to\infty\), the channel is a fully deterministic LOS channel
莱斯衰落信道指除了经反射折射散射等来的信号外, 还有从发射机直接到达接收机 (如从卫星直接到达地面接收机)的信号,那么总信号的强度服从分布莱斯分布。有一条主路径,其余多径传输过来的信号仍如瑞利衰落所述。
瑞利衰落只适用于从发射机到接收机不存在直射信号(LOS,Line of Sight)的情况,即信道模型能够描述由电离层和对流层反射的短波信道,以及建筑物密集的城市环境。否则应使用莱斯衰落信道作为信道模型。
建模
\[ \textbf{h}=\sqrt{\frac{\kappa}{1+\kappa}}e^{\text{i}\varphi_0}\textbf{h}_{\text{los}}+\sqrt{\frac{1}{1+\kappa}}\textbf{h}_{\text{nlos}} \]
其中\(\varphi_0\)是初始相位。有LOS部分: \[ \textbf{h}_{\text{los}}=[1,e^{\text{i}\Phi_1},\cdots,e^{\text{i}\Phi_{M-1}}]^\mathrm{T} \] 且\(\Phi_t=-t\pi\sin\phi\),\(\phi\)是azimuth angle relative to the boresight of the transmitting antenna array。
有Rayleigh部分: \[ \textbf{h}_{\text{nlos}}\sim\mathcal{CN}(\textbf{0},\textbf{R}) \]
适用范围
CSI-Free中,对Wireless Energy Transfer的信道进行建模。
- On CSI-Free Multiantenna Schemes for Massive RF Wireless Energy Transfer. Onel L. A. López et.al. IEEE Internet of Things Journal, Jan.1, 1 2021 (pdf) (Citations 8)
实现
1 | |
?? Wideband geometric channel model
介绍
Consider a transmitter-IRS channel, \(\textbf{h}_{T,k}\), (and similarly for the IRS-receiver channel) consisting of L clusters. Each cluster contributes with one ray from the transmitter to the IRS. The ray parameters are: azimuth/elevation angles of arrival, \(\theta_l,\phi_l\in[0,2\pi)\); complex coefficient ; \(\alpha_l\in\mathbb{C}\); time delay \(\tau_l\in\mathbb{R}\). The transmitter-IRS path loss is denoted by \(\rho_T\). The pulse shaping function, with \(T_s\)-spaced signaling, is defined as \(p(\tau)\) at \(\tau\) seconds. The frequency-domain channel vector, \(\textbf{h}_{T,k}\), can then be defined as
### 建模
\[ \mathbf{h}_{\mathrm{T}, k}=\sqrt{\frac{M}{\rho_{\mathrm{T}}}} \sum_{d=0}^{D-1} \sum_{\ell=1}^{L} \alpha_{\ell} \mathbf{a}\left(\theta_{\ell}, \phi_{\ell}\right) p\left(d T_{S}-\tau_{\ell}\right) e^{-j \frac{2 \pi k}{K} d} \]
where \(\mathbf{a}\left(\theta_{\ell}, \phi_{\ell}\right)\in\mathbb{C}^{M\times 1}\) is the IRS array response vector. Assume a block-fading channel model, where \(\textbf{h}_{T,k}\) and \(\textbf{h}_{T,k}\) are assumed to stay constant over the channel coherence time.
适用范围
Both transmitter and Receiver have only one antenna.
- Deep Learning Coordinated Beamforming for Highly-Mobile Millimeter Wave Systems. Ahmed Alkhateeb et.al. IEEE Access, 2018 (pdf) (Citations 186)
- Deep Reinforcement Learning for Intelligent Reflecting Surfaces: Towards Standalone Operation. Abdelrahman Taha et.al. 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 26-29 May 2020 (pdf) (Citations 24)
Saleh-Valenzuela (SV) model (Narrowband geometric channel model)
介绍
Saleh-Valenzuela (SV) model where a geometric channel model is adopted with limited scattering.
eg: BS->IRS
建模
\[ \textbf{H}=\sqrt{\frac{NM}{\rho}}\sum\limits_{l=1}^L\varrho_l\textbf{a}_r(\vartheta_l,\gamma_l)\textbf{a}_l^\mathrm{H}(\phi_l) \]
其中,\(\rho\) average path-loss between BS and IRS; \(L\) is the number of paths; \(\varrho\) denotes the complex gain associated with the \(l\)-th path; \(\vartheta_l\) and \(\gamma_l\) denote the azimuth angle and elevation angle of arrival (AoA), respectively. \(\phi_l\) is the angle of departure (AoD), \(\textbf{a}_r\) and \(\textbf{a}_t\) represent the receive and transmit array response vectors, respectively.
假设IRS为一个有\(M_x\times M_y\)个elements的UPA (Uniform Planner Array),则有: \[ \textbf{a}_r(\vartheta_l,\gamma_l)=\textbf{a}_x(u)\otimes\textbf{a}_y(v) \] 其中,\(\otimes\)表示Kronecker product(克罗内克积)。\(\textbf{a}_x(u)\)和\(\textbf{a}_y(v)\)表示导向矢量 or 相应向量 (steering vector) or 阵列流形 (array manifold)。 且\(u\triangleq2\pi d\cos(\gamma_l)/\lambda\)(即空间相位),\(v\triangleq2\pi d\sin(\gamma_l)\cos(\vartheta_l)/\lambda\),\(d\)表示天线位置:
在更多的文章中,\(v\triangleq2\pi d\sin(\gamma_l)\sin(\vartheta_l)/\lambda\),这和选取的参考系相关。我个人认为选\(\sin\sin\)比较好
\[ \begin{aligned} &\boldsymbol{a}_{x}(u) \triangleq \frac{1}{\sqrt{M_{x}}}\left[\begin{array}{llll} 1 & e^{j u} & \ldots & e^{j\left(M_{x}-1\right) u} \end{array}\right]^{T} \\ &\boldsymbol{a}_{y}(v) \triangleq \frac{1}{\sqrt{M_{y}}}\left[\begin{array}{llll} 1 & e^{j v} & \ldots & e^{j\left(M_{y}-1\right) v} \end{array}\right]^{T} \end{aligned} \] 由于毫米波信道的稀疏散射特性,路径L的数目相对于G的维度很小。
理解
毫米波信道可以简化为单径信道模型(求和)。主要是LoS场景。毫米波绕射能力差,路径稀疏,信道模型具有丰富的几何特征。
上面的\(\mathbf{H}\)其实就是接收为面阵,发射为线阵的导向矢量乘积,也就是==直射信道==。
适用范围
考虑毫米波稀疏散射特性,有\(L\)个路径。
- Compressed Channel Estimation for Intelligent Reflecting Surface-Assisted Millimeter Wave Systems. Peilan Wang et.al. IEEE Signal Processing Letters, 2020 (pdf) (Citations 72)
- Deep Channel Learning for Large Intelligent Surfaces Aided mm-Wave Massive MIMO Systems. Ahmet M. Elbir et.al. IEEE Wireless Communications Letters, Sept. 2020 (pdf) (Citations 51)
实现
1 | |
还有简化版本,只有一个主径:
1 | |