CSI-Free相关文献代码复现
OneL’s CSI-Free and CSI-Based Wireless Energy Transfer Method Reproduction
参考OneL’s Github[1]源码复现。
Log
Done
ToDo
Channel Path Loss
直接搬用OneL的log-distance model:
1 | |
返回一个系数beta作为路径衰落。随相对距离Distance的指数衰减(但是我没有找到论文或者表述来描述这个所谓的log-distance model)
防止在Distance=0时beta>1,所以有一个\(\min(\cdot)\)。
Channel Model
Channel
准静态信道,也是几乎所有OneL文章使用的模型<span class=“hint–top hint–rounded” aria-label=“O. L. A. López, S. Montejo-Sánchez, R. D. Souza, C. B. Papadias and H. Alves,”On CSI-Free Multiantenna Schemes for Massive RF Wireless Energy Transfer," in IEEE Internet of Things Journal, vol. 8, no. 1, pp. 278-296, 1 Jan.1, 2021, doi: 10.1109/JIOT.2020.3003114.">[2],分为直射信道(LoS)和非直射信道(NLoS): \[ \begin{aligned} \textbf{h}=\sqrt{\frac{\kappa}{1+\kappa}}e^{\text{i}\varphi_0}\textbf{h}_{\text{los}}+\sqrt{\frac{1}{\kappa+1}}\textbf{h}_{\text{nlos}} \end{aligned} \]
1 | |
Preventive Adjustment of Mean Shift
同时考虑到Preventive Adjustment of Mean Shift,有:
1 | |
choice可以选择:
- mean: 即文章<span class=“hint–top hint–rounded” aria-label=“O. L. A. López, S. Montejo-Sánchez, R. D. Souza, C. B. Papadias and H. Alves,”On CSI-Free Multiantenna Schemes for Massive RF Wireless Energy Transfer," in IEEE Internet of Things Journal, vol. 8, no. 1, pp. 278-296, 1 Jan.1, 2021, doi: 10.1109/JIOT.2020.3003114.">[2]中介绍的max-E的优化策略,相邻天线之间相移\(\pi\)
- variance: 即文章<span class=“hint–top hint–rounded” aria-label=“O. L. A. López, S. Montejo-Sánchez, R. D. Souza, C. B. Papadias and H. Alves,”On CSI-Free Multiantenna Schemes for Massive RF Wireless Energy Transfer," in IEEE Internet of Things Journal, vol. 8, no. 1, pp. 278-296, 1 Jan.1, 2021, doi: 10.1109/JIOT.2020.3003114.">[2]中介绍的min-variance的优化策略,相邻天线之间没有相移
EH Transfer Function
1 | |
OneL少考虑了Energy=saturation的特殊情况
CSI-Free
AA-IS
1 | |
如参考文献<span class=“hint–top hint–rounded” aria-label=“O. L. A. López, S. Montejo-Sánchez, R. D. Souza, C. B. Papadias and H. Alves,”On CSI-Free Multiantenna Schemes for Massive RF Wireless Energy Transfer," in IEEE Internet of Things Journal, vol. 8, no. 1, pp. 278-296, 1 Jan.1, 2021, doi: 10.1109/JIOT.2020.3003114.">[2]中建模eqn:10,假设所有发射机的能量: \[ E=g(\frac{\beta}{M}||\textbf{h}^*||^2) \] 其中,\(\beta\)是考虑路径损耗和总发射功率后,在接收端可用的功率,\(M\)是总的天线个数,\(h_i\)是第\(i\)个天线到EH的信道。
SA
1 | |
如参考文献<span class=“hint–top hint–rounded” aria-label=“O. L. A. López, S. Montejo-Sánchez, R. D. Souza, C. B. Papadias and H. Alves,”On CSI-Free Multiantenna Schemes for Massive RF Wireless Energy Transfer," in IEEE Internet of Things Journal, vol. 8, no. 1, pp. 278-296, 1 Jan.1, 2021, doi: 10.1109/JIOT.2020.3003114.“>[2]中建模eqn:12或者参考文献<span class=”hint–top hint–rounded" aria-label=“O. L. A. López, H. Alves, R. D. Souza and S. Montejo-Sánchez,”Statistical Analysis of Multiple Antenna Strategies for Wireless Energy Transfer," in IEEE Transactions on Communications, vol. 67, no. 10, pp. 7245-7262, Oct. 2019, doi: 10.1109/TCOMM.2019.2928542.">[3]中的eqn:15,假设所有发射机的能量: \[ E = \frac{1}{M}\sum\limits_{i=1}^Mg(\beta|h^*_i|^2) \]
值得注意的是,因为每根天线的持续时间为原始的\(1/M\),所以其求和和平均在Energy Transfer Function \(g(\cdot)\)之外。
AA-SS
1 | |
根据参考文献<span class=“hint–top hint–rounded” aria-label=“O. L. A. López, S. Montejo-Sánchez, R. D. Souza, C. B. Papadias and H. Alves,”On CSI-Free Multiantenna Schemes for Massive RF Wireless Energy Transfer," in IEEE Internet of Things Journal, vol. 8, no. 1, pp. 278-296, 1 Jan.1, 2021, doi: 10.1109/JIOT.2020.3003114.“>[2]eqn:8或者参考文献<span class=”hint–top hint–rounded" aria-label=“O. L. A. López, H. Alves, R. D. Souza and S. Montejo-Sánchez,”Statistical Analysis of Multiple Antenna Strategies for Wireless Energy Transfer," in IEEE Transactions on Communications, vol. 67, no. 10, pp. 7245-7262, Oct. 2019, doi: 10.1109/TCOMM.2019.2928542.">[3]的eqn:14: \[ E = g(\frac{\beta}{M}|\sum\limits_{i=1}^Mh_i|^2)=g(\frac{\beta}{M}|\textbf{1}^T\textbf{h}^*|^2) \]
APS-EMW
1 | |
根据参考文献<span class=“hint–top hint–rounded” aria-label=“B. Clerckx and J. Kim,”On the Beneficial Roles of Fading and Transmit Diversity in Wireless Power Transfer With Nonlinear Energy Harvesting," in IEEE Transactions on Wireless Communications, vol. 17, no. 11, pp. 7731-7743, Nov. 2018, doi: 10.1109/TWC.2018.2870377.">[4]eqn:14,有: \[ y(t)=\sqrt{\frac{2P}{M}}\Re\{\varLambda^{-\frac{1}{2}}h(t)e^{jw_0t}\} \] 其中的时变信道\(h(t)\)有: \[ h(t)=\sum\limits_{m=1}^Mh_me^{j\psi_m(t)} \] 其中的\(\psi_m(t)\)是一个时变的相位,控制信道的时变。
快衰信道体现在幅度和相位的变化,所以在信道幅度上乘一个randn(N,1),因为假设对N个用户中任意一个用户而言信道是准静态的;对于相位则是每根天线有一个随机相位randn(M,1)
Plot Space
1 | |
Result
- AA-IS和AA-SA还是不太一样,这个主要原因是因为EH-Transfer-Function是非线性造成的。
CSI-Based
Optimizer
1 | |
Compute Energy
1 | |
注意这里用特征值代表对应\(\textbf{w}\)持续的时间,能量为:

Plot Space
1 | |
与Onel在论文中的设置不一样,由于Onel在论文中的设置是,在\(R\)为半径的圆内EH Receiver 随机分布,取其中最差的结果作为性能指标。这样随机性太大了
我的想法是以\(R\)为半径,均匀分布在圆周上,并取其中最差的结果作为衡量指标,这样结果比较稳定。结果见下节。
Result

Reference
- https://github.com/onel2428/WEToverview ↩︎
- O. L. A. López, S. Montejo-Sánchez, R. D. Souza, C. B. Papadias and H. Alves, “On CSI-Free Multiantenna Schemes for Massive RF Wireless Energy Transfer,” in IEEE Internet of Things Journal, vol. 8, no. 1, pp. 278-296, 1 Jan.1, 2021, doi: 10.1109/JIOT.2020.3003114. ↩︎
- O. L. A. López, H. Alves, R. D. Souza and S. Montejo-Sánchez, “Statistical Analysis of Multiple Antenna Strategies for Wireless Energy Transfer,” in IEEE Transactions on Communications, vol. 67, no. 10, pp. 7245-7262, Oct. 2019, doi: 10.1109/TCOMM.2019.2928542. ↩︎
- B. Clerckx and J. Kim, “On the Beneficial Roles of Fading and Transmit Diversity in Wireless Power Transfer With Nonlinear Energy Harvesting,” in IEEE Transactions on Wireless Communications, vol. 17, no. 11, pp. 7731-7743, Nov. 2018, doi: 10.1109/TWC.2018.2870377. ↩︎
- O. L. A. López, F. A. Monteiro, H. Alves, R. Zhang and M. Latva-Aho, “A Low-Complexity Beamforming Design for Multiuser Wireless Energy Transfer,” in IEEE Wireless Communications Letters, vol. 10, no. 1, pp. 58-62, Jan. 2021, doi: 10.1109/LWC.2020.3020576. ↩︎
- A. Thudugalage, S. Atapattu and J. Evans, “Beamformer design for wireless energy transfer with fairness,” 2016 IEEE International Conference on Communications (ICC), 2016, pp. 1-6, doi: 10.1109/ICC.2016.7511170. ↩︎