Active IRS versus Passive IRS

Wireless Communication Aided by Intelligent Reflecting Surface: Active or Passive?. Changsheng You et.al. IEEE Wireless Communications Letters, Dec. 2021 (pdf) (Citations 9)

Quick Overview

a single antenna access point communicates with a single-antenna user

rate-maximization with passive/active IRS:

  • active IRS should be deployed closer to the RECEIVER with the decreasing amplification power of the active IRS (known in Lemma1)
  • passive IRS is known to be near the transmitter or receiver to minimize the path-loss (known in my-note section 3.2)

optimal the placement:

  • passive IRS outperform active IRS when the number of element is sufficiently large/ the amplification power of the active IRS is too small.(known in my-note section 3.3)
  • optimal placement to maximize the weighted sum-rate of uplink and downlink communications. Passive is more likely to achieve superior rate performance.(known in my-note section 3.4)

Model

System Model

Main Work

Active IRS

\[ y_{\mathrm{act}}=\boldsymbol{h}_{\mathrm{IU}}^{H} \eta \boldsymbol{\Theta}\left(\boldsymbol{h}_{\mathrm{AI}} s+\boldsymbol{n}_{\mathrm{F}}\right)+n \]

achievable rate = \(\log_2(1+\text{SNR})=\log _{2}\left(1+\frac{P_{\mathrm{A}}\left|\boldsymbol{h}_{\mathrm{IU}}^{H} \eta \boldsymbol{\Theta} \boldsymbol{h}_{\mathrm{AI}}\right|^{2}}{\left\|\boldsymbol{h}_{\mathrm{IU}}^{H} \eta \boldsymbol{\Theta}\right\|^{2} \sigma_{\mathrm{F}}^{2}+\sigma^{2}}\right)\)

image-20220613200418754

得到优化目标(P1):

image-20220613200547459

然后由于(4a)恒成立(是e的指数次项),且(4e)等价形式\(P_{\mathrm{F}} \geq N P_{\mathrm{A}} \beta /\left(D^{2}/4+H^{2}\right)+N \sigma_{\mathrm{F}}^{2}\)

(原文这个等式有错误,$D^2$没有乘系数1/4)

得到等效的(P2):

image-20220613200850218

因为信道建模为: \[ \boldsymbol{h}_{\mathrm{AI}}=h_{\mathrm{AI}} \boldsymbol{a}_{\mathrm{r}}\left(\theta_{\mathrm{AI}}^{\mathrm{r}}, \vartheta_{\mathrm{AI}}^{\mathrm{r}}, N\right), \text { where } h_{\mathrm{AI}} \triangleq \sqrt{\beta / d_{\mathrm{AI}}^{2}} e^{-j \frac{2 \pi}{\lambda} d_{\mathrm{AI}}} \] 优化目标就是max(SINR)

整理得到优化目标(P3):

image-20220613201108869

可以得到Lemma1:AP-IRS的距离\(x_{AI}\)\(P_F\)的增大而单调递减;随\(N\)非减。(随\(P_F\)的单调递减证明没看懂)

然后有给定的lemma2:

给定\(H\ll D\): \[ \max \left\{C_{1} d_{\mathrm{AI}}^{2}, C_{2} d_{\mathrm{IU}}^{2}\right\} \gg C_{3} d_{\mathrm{AI}}^{2} d_{\mathrm{IU}}^{2}, \forall x_{\mathrm{AI}} \in[0, D] \] 如果有: \[ \sqrt{P_{A} \beta} / \sigma_{\mathrm{F}}+\sqrt{P_{F} \beta} / \sigma \gg D \]

所以由Lemma2可以得到优化目标(P4):

image-20220613203905971

这就是个高中数学题:

image-20220613211827054

Passive IRS

与active IRS 类似,得到\(\mathrm{SNR}_{\text {pas }}^{(\mathrm{DL})}=\frac{P_{\mathrm{A}} \beta^{2} N^{2}}{d_{\mathrm{AI}}^{2} d_{\mathrm{IU}}^{2} \sigma^{2}}\),然后由参考文献给出,对于Passive IRS,\(x_{AI}=0\quad or\quad D\),得到: \[ \mathrm{SNR}_{\text {pas }}^{(\mathrm{DL}) *} \approx \widetilde{\mathrm{SNR}}_{\text {pas }}^{(\mathrm{DL})} \triangleq \frac{P_{\mathrm{A}} \beta^{2} N^{2}}{H^{2}\left(D^{2}+H^{2}\right) \sigma^{2}} \]

Active IRS versus Passive IRS

image-20220613213941563

image-20220613213954293

即:

给定较小的\(H\),当Active IRS的功率\(P_F\)太小或者IRS装配了大量的elements(\(N\)很大),Passive IRS 往往优于 Active IRS。

maximize the weighted sum-rate of uplink and downlink communications.

对于一个较小的\(P_F\),active IRS 在上行时应该接近AP, 在下行接近User(see Lemma1)。(需要权衡)

而Passive IRS,IRS放置于AP或者User,对于上行/下行都是最佳(因为上行的\(x_{AI}=0 orD\)和下行的最佳\(x_{AI}=Dor0\)是相同的)。(直接最佳)

Simulation

参数设置:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
N=400; % number of IRS elements
H=1.5; % IRS altitude
fc =0.75e9; % carrier wave frequency
lambda = 0.4; % wave length
D = 50; % horizontal distance between AP and User
% Other parameters
PA_dBm = 20; % the power of transmitter (DownLink)
PU_dBm = 15; % the power of receiver (UpLink)
sigma_2_dBm = -80; % noise power from IRS to User
sigma_F_2_dBm = -70; % noise power from AP to IRS
beta_dB = -30; % reference path loss
% 转换为功率比
PA = 10^((PA_dBm-30)/10);
PU = 10^((PU_dBm-30)/10);
sigma_2 = 10^((sigma_2_dBm-30)/10);
sigma_F_2 = 10^((sigma_F_2_dBm-30)/10);
% beta = (lambda/(4*pi))^2;
beta = 10^(beta_dB/10);

Fig. 2

对比Optimal位置优化和Suboptimal位置优化,证明作者提出的Suboptimal是有效的:

首先是Optimal way,对应于(P3)

image-20220614141413650

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
function out = optimal_way(PA,PU,sigma_2,sigma_F_2,beta, N, H, D)
out = [];
for PF_dBm = 0:1:10
PF = 10^((PF_dBm-30)/10);
x0 = sqrt(max(0, N*PA*beta/(PF-N*sigma_F_2)-H^2));
max_obj=0;
max_indx = 0;
for xa = x0:1:D % one-dimensional search to find the best placement
C1 = beta*sigma_F_2;
C2 = PA*beta*sigma_2/PF;
C3 = sigma_2*sigma_F_2/PF;
d_AI_2 = xa^2+H^2;
d_IU_2 = (D-xa)^2+H^2;
obj = PA*beta^2*N/(C1*d_AI_2+C2*d_IU_2+C3*d_AI_2*d_IU_2);
if obj>max_obj
max_obj = obj;
max_indx = xa;
end
end
out = [out max_indx];
end
end

然后是Suboptimal way,对应于(P4):

image-20220614141432027

1
2
3
4
5
6
7
8
function out = suboptimal_way(PA,PU,sigma_2,sigma_F_2,beta, N, H, D)
out = [];
for PF_dBm = 0:1:10
PF = 10^((PF_dBm-30)/10);
x0 = sqrt(max(0, N*PA*beta/(PF-N*sigma_F_2)-H^2));
out = [out max(sigma_2*PA/(sigma_2*PA+sigma_F_2*PF)*D, x0)];
end
end

activet_IRS_1_2

Fig. 3

Active IRS的achievable rate需要先算SNR,再由\(R=\log_2(1+\text{SNR})\)得到。为了方便计算,这里我用Suboptimal优化位置。对应于(eqn.11)

eqn.11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
function R_act = ActiveIRS_achievable_rate(PA,PU,sigma_2,sigma_F_2,beta, H, D, PF)
R_act = [];
for N=100:10:500
% 用Suboptimal的位置优化结果求achievable rate
x0 = sqrt(max(0, N*PA*beta/(PF-N*sigma_F_2)-H^2));
threshold = sigma_2*PA*D/(sigma_2*PA+sigma_F_2*PF);
if x0<=threshold
SNR_act = N*beta/(D^2)*(PA/sigma_F_2+PF/sigma_2);
else
disp('2')%发现一个问题,所有的x0都小于threshold
C1 = beta*sigma_F_2;
C2 = PA*beta*sigma_2/PF;
SNR_act = PA*beta^2*N/(C1*x0^2+C2*(D-x0)^2);
end
R_act = [R_act log2(1+SNR_act)];
end
end

Passive IRS同理:

eqn.15

1
2
3
4
5
6
7
function R_pas = PassiveIRS_achievable_rate(PA,PU,sigma_2,sigma_F_2,beta, H, D)
R_pas = [];
for N=100:10:500
SNR_pas = PA*beta^2*N^2/(H^2*(H^2+D^2)*sigma_2);
R_pas = [R_pas log2(1+SNR_pas)];
end
end

activet_IRS_1_3

Fig. 4

计算weighted sum-rate,意味存在两个分配问题:

  • IRS位置
  • 上行、下行分配的时间(我是这么理解\(w^{(UL)}\)\(w^{(DL)}\)

对于Active IRS,对应(P6)

image-20220614142439139

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
function out = ActiveIRS_Weighted_Sum_rate(PA,PU,sigma_2,sigma_F_2,beta, N, H, D, PF)
out = [];
for w_dl = 0:0.02:1
w_ul = 1-w_dl;
max_obj = 0;
for xa=0:1:D
d_AI_2 = xa^2+H^2;
d_IU_2 = (D-xa)^2+H^2;
R_act_UL = log2(1+PU*beta^2*N^2/(beta*N*sigma_F_2*d_IU_2+PU*beta*N*sigma_2/PF*d_AI_2+N*sigma_2*sigma_F_2/PF*d_AI_2*d_IU_2));
R_act_DL = log2(1+PA*beta^2*N^2/(beta*N*sigma_F_2*d_AI_2+PA*beta*N*sigma_2/PF*d_IU_2+N*sigma_2*sigma_F_2/PF*d_AI_2*d_IU_2));
obj = w_ul*R_act_UL+w_dl*R_act_DL;
max_obj = max(max_obj, obj);
end
out = [out , max_obj];
end
end

对于Passive IRS,对应(P7)

1
2
3
4
5
6
7
8
function out = PassiveIRS_Weighted_Sum_rate(PA,PU,sigma_2,sigma_F_2,beta, N, H, D, PF)
out = [];
for w_dl = 0:0.02:1
w_ul = 1-w_dl;
R_obj = w_ul*log2(1+PU*beta^2*N^2/(H^2*(D^2+H^2)*sigma_2))+w_dl*log2(1+PA*beta^2*N^2/(H^2*(D^2+H^2)*sigma_2));
out = [out R_obj];
end
end

activet_IRS_1_4

Fig. 5(结果和论文中有一定差异

考虑\(H\)对weighted sum-rate 的影响,Active IRS:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
w_dl = 0.5;
w_ul = 1-w_dl;
out = [];
for H = 1.5:0.5:10
max_obj = 0;
for xa=0:1:D
d_AI_2 = xa^2+H^2;
d_IU_2 = (D-xa)^2+H^2;
R_act_UL = log2(1+PU*beta^2*N^2/(beta*N*sigma_F_2*d_IU_2+PU*beta*N*sigma_2/PF*d_AI_2+N*sigma_2*sigma_F_2/PF*d_AI_2*d_IU_2));
R_act_DL = log2(1+PA*beta^2*N^2/(beta*N*sigma_F_2*d_AI_2+PA*beta*N*sigma_2/PF*d_IU_2+N*sigma_2*sigma_F_2/PF*d_AI_2*d_IU_2));
obj = w_ul*R_act_UL+w_dl*R_act_DL;
max_obj = max(max_obj, obj);
end
out = [out , max_obj];
end

Passive IRS:

1
2
3
4
5
out = [];
for H = 1.5:0.5:10
R_obj = w_ul*log2(1+PU*beta^2*N^2/(H^2*(D^2+H^2)*sigma_2))+w_dl*log2(1+PA*beta^2*N^2/(H^2*(D^2+H^2)*sigma_2));
out = [out, R_obj];
end

activet_IRS_1_5

Question

complex channel gain到底指什么?

Passive IRS 为什么x=D/x=0?


Active IRS versus Passive IRS
https://lcjoffrey.top/2022/06/13/activeIRS-1/
作者
Joffrey
发布于
2022年6月13日
更新于
2022年6月14日
许可协议