Active IRS Versus Passive IRS
Wireless Communication Aided by Intelligent Reflecting Surface: Active or Passive?. Changsheng You et.al. IEEE Wireless Communications Letters, Dec. 2021 (pdf) (Citations 9)
Quick Overview
a single antenna access point communicates with a single-antenna user
rate-maximization with passive/active IRS:
- active IRS should be deployed closer to the RECEIVER with the decreasing amplification power of the active IRS (known in Lemma1)
- passive IRS is known to be near the transmitter or receiver to minimize the path-loss (known in my-note section 3.2)
optimal the placement:
- passive IRS outperform active IRS when the number of element is sufficiently large/ the amplification power of the active IRS is too small.(known in my-note section 3.3)
- optimal placement to maximize the weighted sum-rate of uplink and downlink communications. Passive is more likely to achieve superior rate performance.(known in my-note section 3.4)
Model
Main Work
Active IRS
achievable rate =
得到优化目标(P1):
然后由于(4a)恒成立(是e的指数次项),且(4e)等价形式
(原文这个等式有错误,$$D^2$$没有乘系数1/4)得到等效的(P2):
因为信道建模为:
优化目标就是max(SINR)
整理得到优化目标(P3):
可以得到Lemma1:AP-IRS的距离随的增大而单调递减;随非减。(随的单调递减证明没看懂)
然后有给定的lemma2:
给定:
如果有:
所以由Lemma2可以得到优化目标(P4):
这就是个高中数学题:
Passive IRS
与active IRS 类似,得到,然后由参考文献给出,对于Passive IRS,,得到:
Active IRS versus Passive IRS
即:
给定较小的,当Active IRS的功率太小或者IRS装配了大量的elements(很大),Passive IRS 往往优于 Active IRS。
Joint Downlink and Uplink communication
maximize the weighted sum-rate of uplink and downlink communications.
对于一个较小的,active IRS 在上行时应该接近AP, 在下行接近User(see Lemma1)。(需要权衡)
而Passive IRS,IRS放置于AP或者User,对于上行/下行都是最佳(因为上行的和下行的最佳是相同的)。(直接最佳)
Simulation
参数设置:
N=400; % number of IRS elements
H=1.5; % IRS altitude
fc =0.75e9; % carrier wave frequency
lambda = 0.4; % wave length
D = 50; % horizontal distance between AP and User
% Other parameters
PA_dBm = 20; % the power of transmitter (DownLink)
PU_dBm = 15; % the power of receiver (UpLink)
sigma_2_dBm = -80; % noise power from IRS to User
sigma_F_2_dBm = -70; % noise power from AP to IRS
beta_dB = -30; % reference path loss
% 转换为功率比
PA = 10^((PA_dBm-30)/10);
PU = 10^((PU_dBm-30)/10);
sigma_2 = 10^((sigma_2_dBm-30)/10);
sigma_F_2 = 10^((sigma_F_2_dBm-30)/10);
% beta = (lambda/(4*pi))^2;
beta = 10^(beta_dB/10);
Fig. 2
对比Optimal位置优化和Suboptimal位置优化,证明作者提出的Suboptimal是有效的:
首先是Optimal way,对应于(P3)
function out = optimal_way(PA,PU,sigma_2,sigma_F_2,beta, N, H, D)
out = [];
for PF_dBm = 0:1:10
PF = 10^((PF_dBm-30)/10);
x0 = sqrt(max(0, N*PA*beta/(PF-N*sigma_F_2)-H^2));
max_obj=0;
max_indx = 0;
for xa = x0:1:D % one-dimensional search to find the best placement
C1 = beta*sigma_F_2;
C2 = PA*beta*sigma_2/PF;
C3 = sigma_2*sigma_F_2/PF;
d_AI_2 = xa^2+H^2;
d_IU_2 = (D-xa)^2+H^2;
obj = PA*beta^2*N/(C1*d_AI_2+C2*d_IU_2+C3*d_AI_2*d_IU_2);
if obj>max_obj
max_obj = obj;
max_indx = xa;
end
end
out = [out max_indx];
end
end
然后是Suboptimal way,对应于(P4):
function out = suboptimal_way(PA,PU,sigma_2,sigma_F_2,beta, N, H, D)
out = [];
for PF_dBm = 0:1:10
PF = 10^((PF_dBm-30)/10);
x0 = sqrt(max(0, N*PA*beta/(PF-N*sigma_F_2)-H^2));
out = [out max(sigma_2*PA/(sigma_2*PA+sigma_F_2*PF)*D, x0)];
end
end
Fig. 3
Active IRS的achievable rate需要先算SNR,再由得到。为了方便计算,这里我用Suboptimal优化位置。对应于(eqn.11)
function R_act = ActiveIRS_achievable_rate(PA,PU,sigma_2,sigma_F_2,beta, H, D, PF)
R_act = [];
for N=100:10:500
% 用Suboptimal的位置优化结果求achievable rate
x0 = sqrt(max(0, N*PA*beta/(PF-N*sigma_F_2)-H^2));
threshold = sigma_2*PA*D/(sigma_2*PA+sigma_F_2*PF);
if x0<=threshold
SNR_act = N*beta/(D^2)*(PA/sigma_F_2+PF/sigma_2);
else
disp('2')%发现一个问题,所有的x0都小于threshold
C1 = beta*sigma_F_2;
C2 = PA*beta*sigma_2/PF;
SNR_act = PA*beta^2*N/(C1*x0^2+C2*(D-x0)^2);
end
R_act = [R_act log2(1+SNR_act)];
end
end
Passive IRS同理:
function R_pas = PassiveIRS_achievable_rate(PA,PU,sigma_2,sigma_F_2,beta, H, D)
R_pas = [];
for N=100:10:500
SNR_pas = PA*beta^2*N^2/(H^2*(H^2+D^2)*sigma_2);
R_pas = [R_pas log2(1+SNR_pas)];
end
end
Fig. 4
计算weighted sum-rate,意味存在两个分配问题:
- IRS位置
- 上行、下行分配的时间(我是这么理解$w^{(UL)}$和$w^{(DL)}$)
对于Active IRS,对应(P6):
function out = ActiveIRS_Weighted_Sum_rate(PA,PU,sigma_2,sigma_F_2,beta, N, H, D, PF)
out = [];
for w_dl = 0:0.02:1
w_ul = 1-w_dl;
max_obj = 0;
for xa=0:1:D
d_AI_2 = xa^2+H^2;
d_IU_2 = (D-xa)^2+H^2;
R_act_UL = log2(1+PU*beta^2*N^2/(beta*N*sigma_F_2*d_IU_2+PU*beta*N*sigma_2/PF*d_AI_2+N*sigma_2*sigma_F_2/PF*d_AI_2*d_IU_2));
R_act_DL = log2(1+PA*beta^2*N^2/(beta*N*sigma_F_2*d_AI_2+PA*beta*N*sigma_2/PF*d_IU_2+N*sigma_2*sigma_F_2/PF*d_AI_2*d_IU_2));
obj = w_ul*R_act_UL+w_dl*R_act_DL;
max_obj = max(max_obj, obj);
end
out = [out , max_obj];
end
end
对于Passive IRS,对应(P7):
function out = PassiveIRS_Weighted_Sum_rate(PA,PU,sigma_2,sigma_F_2,beta, N, H, D, PF)
out = [];
for w_dl = 0:0.02:1
w_ul = 1-w_dl;
R_obj = w_ul*log2(1+PU*beta^2*N^2/(H^2*(D^2+H^2)*sigma_2))+w_dl*log2(1+PA*beta^2*N^2/(H^2*(D^2+H^2)*sigma_2));
out = [out R_obj];
end
end
Fig. 5(结果和论文中有一定差异)
考虑对weighted sum-rate 的影响,Active IRS:
w_dl = 0.5;
w_ul = 1-w_dl;
out = [];
for H = 1.5:0.5:10
max_obj = 0;
for xa=0:1:D
d_AI_2 = xa^2+H^2;
d_IU_2 = (D-xa)^2+H^2;
R_act_UL = log2(1+PU*beta^2*N^2/(beta*N*sigma_F_2*d_IU_2+PU*beta*N*sigma_2/PF*d_AI_2+N*sigma_2*sigma_F_2/PF*d_AI_2*d_IU_2));
R_act_DL = log2(1+PA*beta^2*N^2/(beta*N*sigma_F_2*d_AI_2+PA*beta*N*sigma_2/PF*d_IU_2+N*sigma_2*sigma_F_2/PF*d_AI_2*d_IU_2));
obj = w_ul*R_act_UL+w_dl*R_act_DL;
max_obj = max(max_obj, obj);
end
out = [out , max_obj];
end
Passive IRS:
out = [];
for H = 1.5:0.5:10
R_obj = w_ul*log2(1+PU*beta^2*N^2/(H^2*(D^2+H^2)*sigma_2))+w_dl*log2(1+PA*beta^2*N^2/(H^2*(D^2+H^2)*sigma_2));
out = [out, R_obj];
end
Question
complex channel gain到底指什么?
Passive IRS 为什么x=D/x=0?
本文作者: Joffrey-Luo Cheng
本文链接: http://lcjoffrey.top/2022/06/13/activeIRS-1/
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!