1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
clear variables clc clear close all;
M=1;
nTx=8;
nUsers=4;
nCells=2;
usercellindex=[1 1 2 2];
noise_power = 1; powerpercell = 12;
powerpercell = 10.^(powerpercell./10)*ones(nCells,1);
nIterations = 40;
weights = [1; 1; 1; 1];
channel = sqrt(1/2)*(randn(M, nTx, nUsers, nCells)+ ... 1i*randn(M, nTx, nUsers, nCells));
winit = rand(nTx,nUsers) + 1i*rand(nTx,nUsers); for iCell = 1:nCells winit(:,usercellindex==iCell) = sqrt(powerpercell(iCell))/norm(winit(:,usercellindex==iCell))*winit(:,usercellindex==iCell); end mybetaInit = zeros(nUsers,1); xInit = zeros(nUsers,1); for iUser=1:nUsers otherusers = find(1:nUsers ~= iUser); mybetaInit(iUser) = norm([noise_power;diag(((reshape(channel(:,:,iUser,usercellindex(otherusers)),nTx,[])).')*(winit(:,otherusers)))]); xInit(iUser) = (abs(channel(:,:,iUser,usercellindex(iUser))*winit(:,iUser))/mybetaInit(iUser))^2; end phi = sqrt(xInit)./mybetaInit; tNext = (1+xInit).^weights;
weights = [0.14;0.21;0.28;0.36];
scalecoeff = 1;
tol = 1e-2;
sumrate = zeros(nIterations,1); weightedsumrate = zeros(nIterations,1); seqobj = zeros(nIterations,1);
for iIteration=1:nIterations cvx_begin quiet variables t(nUsers) mybeta(nUsers) x(nUsers) ; variable w(nTx,nUsers) complex; maximize(geo_mean(t)) subject to for iUser=1:nUsers b = (channel(:,:,iUser,usercellindex(iUser))*w(:,iUser)) - 1/(phi(iUser)*2)*(x(iUser)); imag(channel(:,:,iUser,usercellindex(iUser))*w(:,iUser)) == 0; norm([0.5*(b-1);sqrt(phi(iUser)/2)*(mybeta(iUser))]) <= 0.5*real(b+1) ; x(iUser) >= tNext(iUser)^(1/weights(iUser))-1 + 1/weights(iUser)*(tNext(iUser)^(1/weights(iUser)-1))*(t(iUser)-tNext(iUser)); otherusers = find(1:nUsers ~= iUser); interference = [noise_power;diag(((reshape(channel(:,:,iUser,usercellindex(otherusers)),nTx,[])).')*(w(:,otherusers)))]; norm(interference) <= mybeta(iUser); end t >= 1; for iCell=1:nCells norm(vec(w(:,usercellindex==iCell))) <= sqrt(powerpercell(iCell)); end cvx_end; if(contains(cvx_status,'Solved')) phi = x.^(0.5)./mybeta; tNext = t; seqobj(iIteration) = sum(log2(t)); beamformer = w; for iUser=1:nUsers otherusers = find(1:nUsers ~= iUser); interference = [noise_power;diag(((reshape(channel(:,:,iUser,... usercellindex(otherusers)),nTx,[])).')*((beamformer(:,otherusers))))]; SINR=abs(channel(:,:,iUser,usercellindex(iUser))*beamformer(:,iUser))^2/((norm(interference))^2); weightedsumrate(iIteration) = weightedsumrate(iIteration) + weights(iUser)*log2(1+SINR); sumrate(iIteration) = sumrate(iIteration)+log2(1+SINR); end if (iIteration>1)&&(abs(weightedsumrate(iIteration)-weightedsumrate(iIteration-1)) < tol) seqobj(min(iIteration+1,nIterations):end)=[]; sumrate(min(iIteration+1,nIterations):end)=[]; weightedsumrate(min(iIteration+1,nIterations):end)=[]; break; end else disp('There may be a numerical issue in the solver. Early termination'); break; end end
seqobj = seqobj/scalecoeff; weightedsumrate = weightedsumrate/scalecoeff; sumrate = sumrate/scalecoeff;
plot(1:length(weightedsumrate),weightedsumrate,'-rs','MarkerEdgeColor','r',... 'MarkerFaceColor','r'); hold on plot(1:length(seqobj),seqobj,'-bd','MarkerEdgeColor','b',... 'MarkerFaceColor','b'); grid on xlim([1-0.1 length(seqobj)]);
xlabel('Iteration index'); ylabel('Weighted sum rate (b/s/Hz)'); h=legend( 'Weighted sum rate','The objective sequence of convex approximate subproblems','Location','SouthEast'); set(h,'Color', 'w','box','on','EdgeColor','w'); saveas(gcf, './ConvergencePlot.png')
|