优化基础-IRM Rank-One Constrain Recovery
前言
在做一些QCQP(抽空整理一下)问题的时候,存在求解:
后还要再求解的情况,其中,。一般都是丢掉Rank one constrain 得到结果后再恢复rank one。
恢复算法之前一直采用的是Gaussian randomization,总觉得很奇怪。最近学习到了一个算法叫做IRM,效果不错.
Gaussian Randomization
Refer to my blog
Iterative Rank Minimization
参考解析2 和文献
[1] Sun C , Liu Y C , Dai R , et al. Two Approaches for Path Planning of Unmanned Aerial Vehicles with Avoidance Zones[J]. Journal of Guidance Control & Dynamics, 2017, 40(8).
[2] Sun C , Dai R . An iterative approach to Rank Minimization Problems[C]// Decision & Control. IEEE, 2016.
[3] C. Sun, N. Kingry and R. Dai, “A Unified Formulation and Nonconvex Optimization Method for Mixed-Type Decision-Making of Robotic Systems,” in IEEE Transactions on Robotics, vol. 37, no. 3, pp. 831-846, June 2021, doi: 10.1109/TRO.2020.3036619.
对应于我最近的工作,想要解决问题:
现丢掉Rank one constrain,得到:
再进行IRM恢复:
总的流程如下:
本文作者: Joffrey-Luo Cheng
本文链接: http://lcjoffrey.top/2023/12/13/rankoneRecovery/
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!