优化基础-IRM Rank-One Constrain Recovery

前言

在做一些QCQP(抽空整理一下)问题的时候,存在求解:

后还要再求解的情况,其中。一般都是丢掉Rank one constrain 得到结果后再恢复rank one。

恢复算法之前一直采用的是Gaussian randomization,总觉得很奇怪。最近学习到了一个算法叫做IRM,效果不错.

Gaussian Randomization

Refer to my blog

Iterative Rank Minimization

参考解析1

参考解析2 和文献

[1] Sun C , Liu Y C , Dai R , et al. Two Approaches for Path Planning of Unmanned Aerial Vehicles with Avoidance Zones[J]. Journal of Guidance Control & Dynamics, 2017, 40(8).

[2] Sun C , Dai R . An iterative approach to Rank Minimization Problems[C]// Decision & Control. IEEE, 2016.

[3] C. Sun, N. Kingry and R. Dai, “A Unified Formulation and Nonconvex Optimization Method for Mixed-Type Decision-Making of Robotic Systems,” in IEEE Transactions on Robotics, vol. 37, no. 3, pp. 831-846, June 2021, doi: 10.1109/TRO.2020.3036619.

对应于我最近的工作,想要解决问题:

现丢掉Rank one constrain,得到:

再进行IRM恢复:

总的流程如下:

image-20231213211208483